Extension of wavelet compression algorithms to 3D and 4D image data: Exploitation of data coherence in higher dimensions allows very high compression ratios
نویسندگان
چکیده
High resolution multidimensional image data yield huge datasets. For compression and analysis, 2D approaches are often used, neglecting the information coherence in higher dimensions, which can be exploited for improved compression. We designed a wavelet compression algorithm suited for data of arbitrary dimensions, and assessed its ability for compression of 4D medical images. Basically, separable wavelet transforms are done in each dimension, followed by quantization and standard coding. Results were compared with conventional 2D wavelet. We found that in 4D heart images, this algorithm allowed high compression ratios, preserving diagnostically important image features. For similar image quality, compression ratios using the 3D/4D approaches were typically much higher (2-4 times per added dimension) than with the 2D approach. For low-resolution images created with the requirement to keep predefined key diagnostic information (contractile function of the heart), compression ratios up to 2000 could be achieved. Thus, higher-dimensional wavelet compression is feasible, and by exploitation of data coherence in higher image dimensions allows much higher compression than comparable 2D approaches. The proven applicability of this approach to multidimensional medical imaging has important implications especially for the fields of image storage and transmission and, specifically, for the emerging field of telemedicine.
منابع مشابه
Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملImplementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey
Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...
متن کاملHighly Scalable Compression Method for Super Resolution Multi Spectral Images
This paper provides a new technique for lossy multispectral images compression at very high data rates. Image compression is becoming more and more important, as new multispectral instruments are going to generate very high data rates due to the increased spatial and spectral resolutions. The Lossless compression does not provide a sufficient degree of data volume reduction to meet the bandwidt...
متن کاملFour-Dimensional Compression of fMRI Using JPEG2000
Many medical imaging techniques available today generate 4D data sets. One such technique is functional magnetic resonance imaging (fMRI) which aims to determine regions of the brain that are activated due to various cognitive and/or motor functions or sensory stimuli. These data sets often require substantial resources for storage and transmission and hence call for efficient compression algor...
متن کاملMEDICAL IMAGE COMPRESSION: A REVIEW
Within recent years the use of medical images for diagnosis purposes has become necessity. The limitation in transmission and storage space also growing size of medical images has necessitated the need for efficient method, then image Compression is required as an efficient way to reduces irrelevant and redundancy of the image data in order to be able to store or transmits data. It also reduces...
متن کامل